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Abstract. We give a thermodynamical description of the spectrum of generalised dimensions 
for invariant sets recently proposed by Til. Our approach allows us to define an uncountable 
set of generalised spectra, depending on the equilibrium measure supported by the set, 
and we indicate that the dimensions are independent of the measurable partition of the set. 

1. Introduction 

In a recent paper [l], TCl has introduced a new spectrum of generalised dimensions 
to characterise the multifractal nature [2] of the dynamical invariant sets. In this paper 
we give a new different interpretation of that spectrum, which leads us also to define 
an uncountable set of generalised spectra, each one depending on the equilibrium 
measure (Gibbs measure) supported by the set. Until now and for hyperbolic sets, the 
generalised dimensions have been referred to two equilibrium measures, the maximal 
entropy measure [3,4] and the physical measure (Sinai-Bowen-Ruelle (SBR) measure) 
[l, 51. As a consequence of our results, we will see that the generalised dimensions 
computed with respect to the SBR measure coincide with the spectrum introduced by 
Tk1 thus giving a positive answer to the related conjecture formulated in [ 11. 

Before proceeding, it is important to point out to what dynamical systems our 
considerations apply: we consider here the conformal mixing repellers J of transforma- 
tions T of the class C 2  [6]. Among these systems, there is a non-trivial class which is 
particularly simple to study and which exhibits, up to some technicalities, the same 
properties as the general case. It consists of the uniformly expanding maps T of the 
unit interval [0,1], such that T-' [0, 11 consists of s disjoint intervals. If we put A;,  
k = 1, .  . . , s", the disjoint sets of the collection T-" [0, 13, then the invariant set J is 
the Cantor set: 

m s'' J=n U A ; .  (1) 
n = l  k = l  

We call these systems expanding maps of the interval ( E M I )  [7,8]. 
Now we define the various spectra of the generalised dimensions: J will always 

denote the invariant set, and we put on it a probability measure p. Following [3,9], 
we cover J with a p-measurable partition do such that diam d" + 0, n + +a (generating 
partition), where d" = Vy=o T - ' d o  is the dynamical partition. Then we introduce the 
partition function, for real q and 7 ( A i  E d"): 
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where lAl= diameter of A. If it happens that, for fixed q and when n + +CO, there is 
a change-over point T ~ , +  such that H:,,(J) goes to zero for T < T ~ , ~  and tends to infinity 
for T >  T ~ , + ,  we put 

Tq,@ = Q,,(J)(q - 1) (3) 
and call Oq+(J) the generalised dimension of order q of the set J We emphasise the 
fact that these dimensions depend on the measure p and, in general, on the partition 
do. For mixing repellers J it is useful to consider a Markov partition of J [lo]; for 
the EMI  every partition d", n > 0, of the type used in (1) is a Markov partition with 
disjoint rectangles At n J. 

There is a probability measure, supported on J,  which is of special importance to 
compute the spectrum Dq,+(J) .  It is the measure of maximal entropy, denoted by pb 

which is, obviously, T invariant and ergodic and satisfies the balancement property 
[7,11]: p b (  TA) = spb(A), for every measurable set A = J where T is injective. In 
[4,7,9] it has been shown that if a conformal mixing repeller J is Markov partitoned 
and is endowed with the balanced measure pb, the relative change-over point 
satisfies the equation 

P ( - T q , + b )  = qP(o) = q h T O P =  4 log (4) 

where hTo, is the topological entropy and P ( p )  is the topological pressure of the 
function - p  log11 T'(x)ll [lo], i.e. 

M,(J) being the set of the T-invariant probability measures on J,  h ( p )  the p- 
Komogorov entropy and 11 T'(x)ll the norm of the tangent mapping at x :  if the latter 
is a scalar times an isometry, the mixing repeller is said to be conformal (for example, 
Julia sets). 

For the systems we are dealing with and for every real p, there is only one ergodic 
measure pB E M,(J) such that P ( p )  = h ( p u p )  - p  sJ log// T'(x)ll dpB,  and this measure 
is called the (Gibbs) equilibrium measure for the function - p  log11 T'(x)/ .  For confor- 
mal repellers, the integral lJ log11 T'(x)ll d p p  is just the unique pp Lyapunov exponent, 
A(pp) ,  so that (5) can be simply written as 

P ( P )  = h ( p p )  --PMPUp). ( 5 ' )  

Three equilibrium measures have been considered in particular. When p = 0, the 
corresponding measure po is just the balanced measure p b ;  when p = d ,  = Hausdorff 
dimension of J,  the equilibrium measure PdH satisfies the well known Bowen-Ruelle 
formula [ 6 ] :  P ( d , )  = h(pd, )  - d H A ( p d H )  = 0, and is equivalent to the d,-Hausdorff 
measure of J Finally, if p = 1 the corresponding measure satisfiest P ( 1 ) =  
h ( p l ) - A ( p l )  = -a [5,7], where a is the escape rate [12], and for this formal analogy 
with the physical measure for axiom-A attractors, it has been called the Sinai-Bowen- 
Ruelle measure pseR in [5,13]. From now on, the generalised dimensions will be 
indicated as D f ( J ) ,  where the index p refers to the equilibrium measure pB put in 
the partion function (2). 

Now we return to the definition of the generalised spectra introduced in [l]. It 
does not depend, at least in principle, on any measurable partition on the repeller. 

t If the tangent mapping is n dimensional, we must put ,B = n. 
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We start by considering the linear Ruelle-Perron-Frobenius operator Lp from the 
space of continuous functions f on J into itself, of the form 

If we put for any real fixed q :  p = q -  .? and A =exp(-aq),  a being the escape rate, 
then it was argued in [ 13, using numerical methods, that there exists a unique exponent 
fq for which h-"Li f(x) converges uniformly on J to a unique continuous function, 
for any choice of a smooth $ The numbers 

Tq = D , ( J ) ( q  - 1) (7) 

define a new spectrum of generalised dimensions. In the case ,f3 = d H ,  the eigenvalue 
problem ( 6 )  was previously analysed in [14]; see also [15] for related questions. 

2. Dimensions of the Gibbs measure 

We now show that the D,(J)  are related to the pressure as well. The reason is that 
the following theorem can be applied to conformal mixing repellers. 

Theorem [16]. If T is a C 2  transformation of the conformal mixing repeller J onto 
itself, there exist, and are unique, a probability Bore1 measure v on J, a constant A > 0 
and a positive function g such that 

L $ V  = A V  (L" is the dual of L )  

g d v = l  I, Lpg = Ag 

lim A-"Li f(x) = g ( x )  f d v  uniformly on J 

lim n-' log 

n++m I, 
=log A = ~ ( p )  

n-+m 

and 

P p  = gv ( 8 e )  

i.e. the equilibrium measure for the function - p  log11 T'(x)ll is equivalent (with con- 
tinuous Radon-Nykodim derivative) to v. 

Adapting this theorem to our case, having put A = exp(-aq), we immediately obtain 

P ( q - D q ( J ) ( q - l ) ) =  -aq. (9) 

The interpretation of A in terms of pressure has been given with heuristic arguments 
in [17] also. The proof of equation (9) is particularly simple for the E M I .  In fact, if 
do is the partition of [0,1] given by the s sets T-'[O, 11, then every set of the partition 
& " - I =  v;:; T-ido contains one and only one point of the set T-"z, Z E  J. By 
Lagrange's theorem it is easy to see that the diameter of each atom A:-' E & " - I ,  

k =  1,. . . , s", is given by 

I K I l  = I l ( T " ) ' ( W '  (10) 
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where 6 is a point in int(A2-I). Then, by a well known distorsion argument (see, for 
example, [ 18]), given two points x and y in the same A:-' we have the uniform bounds 

where C 2 1 is independent of n > 0. Substituting y E (T-"z n Ai-') with the 6 given 
by (10) and using ( l l ) ,  we can bound ( 6 )  as (we suppose here without restriction that 
q - ? > O )  

c-(q-ij 1 1 C n-1  q - + s  L;+l 
exp(-aqn) IAk I exp(-aqn) 

where the sums are over A i - ' ~ d ~ - ' .  When n++cO, it can be shown that the 
thermodynamical limit of the partition function Z l/lAi-'l@ is just the pressure P ( p )  
and the convergence is uniform in p on any compact subset of R, [7 ,8]  (this also gives 
a good method to compute the pressure numerically [8]; another powerful technique 
which is valid also for connected repellers follows directly from ( 8 d ) ) .  In order for 
the central term of (12) to converge to a strictly positive function, it is easy to see that 
equation (9) must be true. 

Conditions ( 8 a )  and ( 8 d )  imply that 

where A is any measurable subset of J where T is injective. Now, repeating an 
argument quoted in [9], given E > 0 we can find a Markov partition do of [0,1] n J 
such that for any two points x, y in an atom of do we have 1 1  T'(x) 1 1  s e' 1 1  T'( y )  1 1 .  Then 
applying iteratively the relation (13) to the elements A:-' E dn-' = V >-20 T - K d o ,  
replacing the measure Y (up to a finite constant) by ( 8 e )  with the Gibbs measure p@ 
and using again the identity (lo),  we can bound the measure of an atom A>-' as (we 
refer to [9] for the detail; in addition, we suppose without restriction that p > 0) 
en[-E-P(pjlJAz-'JpPU,( T"Az-1) sP An-' 

p (  k ) 

(14) s e  -n[-E+P(p)llAi-ll@lp( T"Az-1) 

where pP( T"Ai-') is the finite measure of an element of the partition do. The relation 
(14) is quite useful to compute the generalised dimensions with respect to the same 
measure pp. In fact, substituting it into (2) and again using the nature of the thermo- 
dynamical limit of the partition function Z l / lA~-' l@, we obtain immediately that the 
change-over point T ~ , +  is uniquely defined and the generalised dimensions D t ( J )  
satisfy 

P(Pq - D $ ( J ) ( q  - 1)) = qP(P) .  (15) 

When p = 0 we recover (4); for /3 = 1 we reproduce Tel's spectrum: it is thus obtained 
by computing the generalised dimensions by the use of the Sinai-Bowen-Ruelle 
measure. Finally, when p = dH the dimensions themselves are simply equal to the 
Hausdorff dimension, as already noted in [9]. The bounds (14) allow us also to 
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compute the Renyi entropies & ( p )  [19] of the Gibbs measure pB. We recall that the 
Renyi entropies are defined as, the partition do being generating, 

1 
& ( p ) ( l - q ) =  lim -log P ( A ; ) ~  

n - m n  A ; ~ ~ ~ I  

Using arguments similar to those which lead to (15) we obtain 

K & ) ( l - q ) =  -qP(P)+P(qP).  (17) 
For p = 1 and P = d H  we recover respectively the formulae already quoted in [ 5 ]  and 
[9]. Finally we note that (15) and (17) also hold for general conformal mixing repellers 
if the techniques of theorem 4.6 in [7] are used. 

We now come back to (15). All these equations give, for q = 0, that Dg = dH = 
Hausdorff dimension of the set, since the pressure is strictly monotone and P ( d , )  = 0 
by the Bowen-Ruelle formula. 

If the mapping T is uniformly expanding on J, there is a power r of T for which 
surely /I( Tr)’(x)ll  2 1, x E J. Using T‘ instead of T (or alternatively an ‘adapted’ metric 
on J )  and the properties (v) and (ix) of the pressure quoted in theorem 2.1 in [20], it 
is easy to show that all the D z ( J )  are non-negative, so they are well defined as 
dimensions. Moreover, since the pressure P( 7) is real analytic in q and deriving ( 1 9 ,  
we obtain 

The unexpected fact is that the D;(J )  for certain q and P can be greater than the 
topological dimension of the ambient space. Let us consider, for example, a linear 
EMI with two scales yl and y2, y,+ y2< 1; in this case the pressure has the expression 

4 

C 

I 

-30 
4 

Figure 1. The dimensions D: against q for p = 0, 1, 2, 3 for the Cantor set with two scales 
y1 = 0.25, y2  = 0.4. They have been computed by solving y f4 -D t (4 - ”+  y ~ q ” ~ ‘ q - ’ ’  = 
(yf  + y t ) q  using a Newton method. The Hausdorff dimension is d,  = 0.610 98. 
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[7]: P ( 7 )  = log(y:+ 7;). If yl = y2, the Dz for fixed q and p variable are all equal 
(homogenuous fractal). If instead we take, say, yl =0.25 and y2=0.4, and compute 
(18) by means of the analytic expression of the pressure, we get Dy = 0.602, Dt = 0.607, 
D:=O.566 and D:=O.491. In figure 1 we sketch DZ against q for p = 0,’ 1, 2, 3; as 
we see, D’, for qs -5 becomes greater than one. Til  [21] has communicated to the 
author that he also observed a similar behaviour for Dfi in another Cantorian system. 

3. Hausdorff measures 

Now we return to (8) and put /3 = exponent of /I T’(x)ll = 7, to avoid future confusion 
with the subscript /3 for the Gibbs measure. 

If we put 7 = dH it is known that the constant A given by (8a) is equal to one and 
the corresponding ‘conformal’ measure v is equivalent to the d,-Hausdorff measure 
of J [6]. If instead we put, for fixed q, r ]  = qp - T , , ~ ~ ,  T , , ~ ~  being the change-over point 
defined in (3), we have seen that A becomes equal to exp(qP(p));  it is therefore natural 
to ask what the meaning of the corresponding measure v is in terms of the local fractal 
properties of J. 

To give an answer to this question, we have to change once more the definition of 
the generalised dimensions given through (2), in such a way as to make them indepen- 
dent of the partition of the invariant set J Following [7] closely, we modify (2) as 

where the infimum is over all countable coverings p, = {Bk(~)}F=l of J by closed balls 
&(X) of centre x E J and of diameter less than 1. It can be shown that H : ( J )  = 
liml,o H;, , (J)  is a Bore1 measure on J and that, for any fixed q, there exists a change-over 
point < , ( J )  such that H : ( J )  is zero when T <  < , ( J )  and is infinite when T >  < , ( J ) ,  and 
<,(I) 5 < , ( J )  when J. The generalised dimensions are then defined in the standard 
way: D,(J)(q - 1) = < , ( J ) .  If we refer the f i q ( J )  to the subsets of full p-measure and 
use the monotony of <,(J) as a set function, we are led to define the generalised 
dimensions of the measure as 

and 

f i (  Y ) = l  

For conformal mixing repellers (and other systems) we have proved in [7] that 
mD,(p)  = MD,(p)  = H D ( ~ ) ,  Vq ER, H D ( ~ )  being the Hausdorff dimension of the 
measure p, i.e. 

H D ( ~ )  = inf {Hausdorff dimension of Y } .  
Y c J  

r (  Y ) = l  

As a consequence of (20) we have that f i , ( J ) S ~ ~ ( p ) , V q 3 1  and f i q ( J ) 3  
H D ( ~ ) ,  Vq s 1. These inequalities-agree, in the light of the following claim applied to 
the balanced measure for which Dq(J)  = D:(J) ,  with the behaviour of D:(J), shown 
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in figure 1. In fact, for this system we have [7] H D ( p b )  = h ( p b ) / A ( p b ) ,  A(pb)  being 
the Lyapunov exponent of the maximal entropy measure. But h ( p b ) = P ( 0 )  and 
A ( p b ) = - a P ( p ) / a p l p = o  [lo], and SO, by (18), H D ( p b ) = D y .  Coming back to the 
interpretation of the measure v defined by the eigenvalue equation LTqp-.‘,,,,p)~ = 
exp( q P ( p ) )  v, we are now in the position to formulate the following. 

Conjecture. If we put on the repeller the equilibrium measure p p ,  the measure v defined 
by the above eigenvalue equation is equivalent to the H@v(J)-measure, where rq,l*p 
is defined by (15). 

As a consequence, we have that the change-over point rq,+ is equal to the corresponding 
one +q defined via (19) having put the measure pp on the set. Then the generalised 
spectra 6 , ( J )  introduced in a ‘partition-independent’ way will satisfy the equation 
P ( p q  - f i q ( J ) ( q  - 1)) = q P ( p ) ,  which geFeralises the similar ‘partition-dependent’ rela- 
tion (15). We see that, for q = 0, -+o = Do(J)  = d ,  and Hio(J) is just the d,-Hausdorff 
measure; moreover we recover the Bowen-Ruelle formula P ( d , )  = 0. 
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